NPT ensemble¶
TL;DR¶
In NPT-MD simulations, pressure and temperature are controlled and remain constant once the system reaches equilibrium. There are two common pressure control (barostat) methods available in ASE: the Parrinello-Rahman method and the Berendsen method.
Typical applications include simulations of thermal expansion, phase transitions, and pressurization of solids and fluids.
In the Parrinello-Rahman method, all degrees of freedom of the simulation cell are variable, and the control parameter (
pfactor
) must be set appropriately.Berendsen barostat, like Berendsen thermostat, can control pressure efficiently for convergence; Berendsen barostat can be calculated in two modes: with fixed cell angles and independently variable cell lengths, or with fixed cell length ratios.
compressibility
must be properly set as an input parameter.
In this section, we will discuss a method to create an equilibrium state in which both pressure and temperature are constant. The pressure control mechanism is generally referred to as barostat, and is used in conjunction with the thermostat method described in section 6-2 to generate a state distribution called an isothermal-isobaric ensemble (also known as NPT).
Phenomena that can be studied, in principle, in NPT-MD simulations include
Coefficient of thermal expansion of solids
Prediction of melting point
Phase transitions in solids
Density prediction of fluids (gases and liquids)
etc.
The reason why the word “in principle” is used is that the reproducibility of these phenomena depends greatly on the accuracy of the force field used in the calculation, and in particular, it is known to be very difficult to predict intermolecular forces and fluid states that depend on small energy differences. In this tutorial, we will learn about NPT-MD through the case study of solids, which are considered to have relatively high accuracy.
First, we will review the NPT-MD methods implemented in ASE that we will use in this tutorial. There are three types of implementations available for ASE
Class |
Ensemble |
Parameter |
thermostat |
barostat |
description |
---|---|---|---|---|---|
NPT |
NPT |
time constant (\(\tau_t\)), pressure factor (pfactor) |
Nosé–Hoover |
Parrinello-Rahman |
セルの全All degrees of freedom of the cell are variable and controllable |
NPTBerendsen |
NPT |
\(\tau_t\),\(\tau_P\),\(\beta_T\) |
Berendsen |
Berendsen |
Cell shape is maintained and only volume changes |
InhomogeneousBerendsen |
NPT |
\(\tau_t\),\(\tau_P\),\(\beta_T\) |
Berendsen |
Berendsen |
Cell angles are preserved, but pressure anisotropy can be taken into account |
The second and third methods in the table are essentially the same Berendsen barostat. (The third method, InhomogeneousBerendsen
, is not mentioned in the ASE manual, but is defined as a class within ASE along with NPTBerendsen
.) Thus, there are only two methods available within the ASE framework: the Parrinello-Rahman method and the Berendsen method. The heat bath itself uses the methods described in section 6-2, so the characteristics of these heat bath methods should be carefully
considered.
Let us first look at the Parrinello-Rahman method, which has relatively high system flexibility and versatility.
Equations of motion for the Parrinello-Rahman method¶
The Parrinello-Rahman method is a so-called extended system calculation method, which assumes that the system under consideration is hypothetically connected to an external system of constant temperature and pressure, as in the Nosé-Hoover heat bath method. In this case, the equations of motion are written as follows (For details of the derivation, please refer to references [1-3]).
Besides the terms for the Nosé-Hoover heat bath, we have the pressure control time constant \(\tau_P\), the system center of mass \(R_o\), the target external pressure \(P_o\), and the simulation cell volume \(V\). The \(\eta\) is the variable for the pressure control degrees of freedom. \(\mathbf{h} = (\mathbf{a}, \mathbf{b}, \mathbf{c})\) and \(\mathbf{a},\mathbf{b},\mathbf{c}\) are cell vectors defining each edge of the simulation cell, respectively.
In addition to temperature \(T_o\) and pressure \(P_o\), there are two other values that the user must set in the above equation: \(\tau_T\) and \(\tau_P\). First, the case where \(\tau_T\) and \(\tau_P\) are simply set to random values is shown below. Here \(\tau_T\) is set to 20 fsec. Although \(\tau_P\) is not specified directly, the value called pfactor
is \(\tau_P^2B\). The \(B\) refers to the bulk modulus, and this value must be calculated and
specified in advance. However, since the exact value of \(\tau_P\) itself is not known in advance, there is no way to specify pfactor
. Also, the value of \(B\) cannot be calculated for anisotropic structures or when different types of materials coexist in the system. Therefore, we will set an approximate value of pfactor
to examine the behavior of the barostat. As mentioned in the following example, at least for crystalline metal systems, a value on the order of about
10\(^6\) GPa\(\cdot\)fs\(^2\) to 10\(^7\) GPa\(\cdot\)fs\(^2\) seems to give good convergence and stability in the calculation. For other materials, it is recommended to play with the value of pfactor
and check the behavior of the volume change as a preliminary study.
Calculation example: Coefficient of thermal expansion¶
Now, we will use the Nosé-Hoover thermostat and the Parrinello-Rahman barostat (ASE’s NPT class) to compute the coefficient of thermal expansion of a solid as an example. The system is equilibrated at temperatures of given increment, and the thermal expansion coefficient is calculated from the average value of the lattice constant at each temperature.
For simplicity, we will use fcc-Cu for this calculation. A sample script is shown below. The temperature is varied from 200 K to 1000 K in 100 K interval and the external pressure is set to 1 bar. The structure is fcc-Cu extended to 3x3x3 unit cells with 108 atoms. In the example, the ASAP3-EMT force field is used for speed, but the same scheme can be used with PFP. The time step size is set to 1 fs, and the 20 ps simulation is found to be sufficient to reach equilibrium.
[1]:
import ase
from ase.build import bulk
from ase.md.velocitydistribution import MaxwellBoltzmannDistribution,Stationary
from ase.md.npt import NPT
from ase.md import MDLogger
from ase import units
from time import perf_counter
calc_type = "EMT"
# calc_type = "PFP"
if calc_type == "EMT":
# ASAP3-EMT calculator
from asap3 import EMT
calculator = EMT()
elif calc_type == "PFP":
# PFP calculator
from pfp_api_client.pfp.estimator import Estimator, EstimatorCalcMode
from pfp_api_client.pfp.calculators.ase_calculator import ASECalculator
estimator = Estimator(model_version="v2.0.0",calc_mode=EstimatorCalcMode.CRYSTAL_U0)
calculator = ASECalculator(estimator)
else:
raise ValueError(f"Wrong calc_type = {calc_type}!")
# Set up a crystal
atoms_in = bulk("Cu",cubic=True)
atoms_in *= 3
atoms_in.pbc = True
print("atoms_in = ",atoms_in)
# input parameters
time_step = 1.0 # fsec
#temperature = 300 # Kelvin
num_md_steps = 20000
num_interval = 10
sigma = 1.0 # External pressure in bar
ttime = 20.0 # Time constant in fs
pfactor = 2e6 # Barostat parameter in GPa
temperature_list = [200,300,400,500,600,700,800,900,1000]
# Print statements
def print_dyn():
imd = dyn.get_number_of_steps()
etot = atoms.get_total_energy()
temp_K = atoms.get_temperature()
stress = atoms.get_stress(include_ideal_gas=True)/units.GPa
stress_ave = (stress[0]+stress[1]+stress[2])/3.0
elapsed_time = perf_counter() - start_time
print(f" {imd: >3} {etot:.3f} {temp_K:.2f} {stress_ave:.2f} {stress[0]:.2f} {stress[1]:.2f} {stress[2]:.2f} {stress[3]:.2f} {stress[4]:.2f} {stress[5]:.2f} {elapsed_time:.3f}")
# run MD
for i,temperature in enumerate(temperature_list):
print("i,temperature = ",i,temperature)
print(f"sigma = {sigma:.1e} bar")
print(f"ttime = {ttime:.3f} fs")
print(f"pfactor = {pfactor:.3f} GPa*fs^2")
temperature_str = str(int(temperature)).zfill(4)
output_filename = f"./output/ch6/fcc-Cu_3x3x3_NPT_{calc_type}_{temperature_str}K"
log_filename = output_filename + ".log"
traj_filename = output_filename + ".traj"
print("log_filename = ",log_filename)
print("traj_filename = ",traj_filename)
atoms = atoms_in.copy()
atoms.calc = calculator
# Set the momenta corresponding to T=300K
MaxwellBoltzmannDistribution(atoms, temperature_K=temperature,force_temp=True)
Stationary(atoms)
dyn = NPT(atoms,
time_step*units.fs,
temperature_K = temperature,
externalstress = sigma*units.bar,
ttime = ttime*units.fs,
pfactor = pfactor*units.GPa*(units.fs**2),
logfile = log_filename,
trajectory = traj_filename,
loginterval=num_interval
)
print_interval = 1000 if calc_type == "EMT" else num_interval
dyn.attach(print_dyn, interval=print_interval)
dyn.attach(MDLogger(dyn, atoms, log_filename, header=True, stress=True, peratom=True, mode="a"), interval=num_interval)
# Now run the dynamics
start_time = perf_counter()
print(f" imd Etot(eV) T(K) stress(mean,xx,yy,zz,yz,xz,xy)(GPa) elapsed_time(sec)")
dyn.run(num_md_steps)
atoms_in = Atoms(symbols='Cu108', pbc=True, cell=[10.83, 10.83, 10.83])
i,temperature = 0 200
sigma = 1.0e+00 bar
ttime = 20.000 fs
pfactor = 2000000.000 GPa*fs^2
log_filename = ./output/ch6/fcc-Cu_3x3x3_NPT_EMT_0200K.log
traj_filename = ./output/ch6/fcc-Cu_3x3x3_NPT_EMT_0200K.traj
imd Etot(eV) T(K) stress(mean,xx,yy,zz,yz,xz,xy)(GPa) elapsed_time(sec)
1000 4.409 175.46 0.51 0.51 0.22 0.79 0.18 0.14 -0.15 3.081
2000 4.554 168.67 0.81 0.62 0.49 1.32 -0.05 0.11 -0.37 6.234
3000 5.053 205.40 0.66 0.42 0.53 1.02 -0.17 -0.15 -0.19 8.929
4000 4.447 185.29 0.45 0.43 0.59 0.34 0.04 -0.31 -0.11 12.269
5000 4.475 177.11 -0.04 0.11 0.17 -0.41 0.19 0.05 -0.15 15.029
6000 5.026 162.44 -0.18 -0.10 -0.10 -0.34 0.19 0.29 0.04 17.755
7000 6.189 216.28 0.06 0.15 -0.17 0.19 -0.10 -0.10 0.12 21.232
8000 5.431 183.85 0.44 0.41 0.37 0.54 -0.47 0.04 0.11 24.111
9000 5.293 206.53 0.23 0.03 0.23 0.44 -0.50 0.22 0.24 27.106
10000 5.408 198.72 -0.42 -0.52 -0.08 -0.64 -0.18 0.23 -0.15 29.854
11000 5.527 199.20 -0.56 -0.44 -0.48 -0.76 -0.27 0.17 -0.23 32.392
12000 5.505 215.48 0.17 0.68 -0.16 -0.01 -0.07 0.12 -0.34 35.132
13000 4.902 186.62 0.82 1.07 0.47 0.92 -0.10 0.15 0.00 37.888
14000 5.960 222.68 0.19 -0.03 0.20 0.41 0.08 0.07 0.02 41.139
15000 5.288 178.66 -0.46 -0.94 -0.03 -0.41 0.36 -0.26 -0.04 44.053
16000 5.017 206.58 -0.37 -0.52 -0.07 -0.51 0.28 -0.22 0.13 47.279
17000 4.912 179.07 0.04 0.30 -0.09 -0.10 0.67 0.03 -0.11 50.617
18000 5.376 200.65 0.68 1.21 0.29 0.52 0.60 0.07 -0.04 53.710
19000 5.138 183.70 0.84 1.47 0.27 0.77 0.65 -0.03 0.04 57.105
20000 5.343 190.34 0.01 0.07 -0.15 0.10 0.71 -0.19 0.04 60.639
i,temperature = 1 300
sigma = 1.0e+00 bar
ttime = 20.000 fs
pfactor = 2000000.000 GPa*fs^2
log_filename = ./output/ch6/fcc-Cu_3x3x3_NPT_EMT_0300K.log
traj_filename = ./output/ch6/fcc-Cu_3x3x3_NPT_EMT_0300K.traj
imd Etot(eV) T(K) stress(mean,xx,yy,zz,yz,xz,xy)(GPa) elapsed_time(sec)
1000 6.948 290.55 0.14 -0.21 0.44 0.18 0.24 0.44 0.02 2.960
2000 7.892 318.00 1.45 1.21 1.42 1.74 0.26 0.30 -0.46 5.941
3000 9.439 371.59 1.60 1.55 1.01 2.23 0.37 0.55 -0.62 8.924
4000 9.264 311.59 0.57 0.71 0.17 0.84 0.40 0.21 -0.62 12.344
5000 9.115 288.89 -1.17 -1.01 -0.79 -1.71 0.25 0.47 -0.65 15.636
6000 7.865 266.53 -1.53 -1.73 -0.65 -2.20 0.17 0.22 -0.69 18.228
7000 8.026 318.54 -0.80 -0.96 -0.51 -0.93 0.32 0.47 -0.11 21.306
8000 7.964 294.51 0.61 0.79 0.02 1.01 0.46 0.49 0.01 24.509
9000 8.997 318.42 1.30 1.42 0.76 1.70 0.24 0.46 -0.07 27.221
10000 8.712 305.76 1.00 1.10 0.70 1.19 0.08 0.62 -0.54 30.628
11000 7.166 236.95 0.01 -0.03 0.49 -0.43 -0.75 0.12 -0.32 33.836
12000 8.156 287.28 -1.48 -1.65 -1.30 -1.51 -0.63 0.06 0.03 36.733
13000 8.132 284.67 -1.49 -1.58 -1.55 -1.32 -0.59 0.24 0.03 39.784
14000 7.562 280.99 0.29 0.34 0.05 0.49 -0.49 0.15 -0.19 42.367
15000 9.115 282.56 0.95 1.25 0.79 0.82 0.09 0.55 -0.20 45.349
16000 8.767 297.23 1.42 1.49 1.58 1.20 -0.18 0.25 -0.08 48.828
17000 8.571 324.21 0.38 0.40 0.64 0.09 -0.26 0.24 0.00 51.943
18000 7.356 273.88 -0.93 -1.05 -1.05 -0.69 -0.65 0.02 -0.14 54.991
19000 7.944 288.90 -1.59 -1.55 -2.02 -1.21 -0.40 0.12 -0.02 58.106
20000 7.669 278.09 -0.19 -0.20 -0.46 0.07 -0.70 0.60 -0.02 61.495
i,temperature = 2 400
sigma = 1.0e+00 bar
ttime = 20.000 fs
pfactor = 2000000.000 GPa*fs^2
log_filename = ./output/ch6/fcc-Cu_3x3x3_NPT_EMT_0400K.log
traj_filename = ./output/ch6/fcc-Cu_3x3x3_NPT_EMT_0400K.traj
imd Etot(eV) T(K) stress(mean,xx,yy,zz,yz,xz,xy)(GPa) elapsed_time(sec)
1000 9.901 380.54 -0.73 -0.88 -0.25 -1.06 0.41 -0.12 -0.01 3.310
2000 10.953 424.68 0.90 0.70 0.91 1.07 0.34 -0.26 -0.04 5.950
3000 11.837 412.66 1.90 2.16 1.42 2.14 -0.47 -0.03 0.37 9.051
4000 12.274 439.53 1.86 2.02 1.84 1.73 -0.41 -0.42 0.27 12.127
5000 10.531 380.62 1.04 1.05 1.03 1.03 -0.64 -0.40 0.08 15.048
6000 10.598 379.05 -0.80 -1.25 -0.61 -0.54 -1.23 -0.08 0.07 17.199
7000 10.303 414.59 -1.51 -1.22 -1.94 -1.38 -0.94 0.04 -0.28 19.426
8000 11.592 415.85 -1.66 -1.27 -1.77 -1.94 -0.85 0.08 -0.10 22.226
9000 10.502 380.82 0.41 0.71 0.53 -0.01 -0.62 -0.20 -0.17 25.079
10000 11.888 399.96 1.09 1.04 1.50 0.73 -0.15 0.35 -0.04 27.839
11000 10.849 362.57 1.82 1.51 1.90 2.03 0.13 -0.22 0.41 30.935
12000 11.039 372.20 0.78 0.24 0.99 1.12 -0.11 -0.13 0.24 33.910
13000 10.181 343.80 -0.48 -0.55 -0.34 -0.55 -0.11 -0.15 0.13 36.696
14000 11.158 385.41 -1.91 -1.46 -1.82 -2.44 -0.58 0.04 0.37 39.738
15000 11.076 378.35 -1.73 -1.31 -1.99 -1.90 0.02 0.27 0.45 42.240
16000 11.301 417.99 -0.36 -0.40 -0.44 -0.24 -0.12 0.49 0.29 45.421
17000 12.074 430.58 0.88 0.97 0.66 1.00 0.47 0.66 0.46 48.240
18000 11.617 391.27 1.58 1.77 1.37 1.60 0.45 0.33 0.10 50.898
19000 13.698 552.14 0.86 0.81 1.02 0.75 0.03 0.55 0.42 53.981
20000 11.356 403.27 -0.28 -0.42 -0.11 -0.29 0.21 0.62 -0.19 57.308
i,temperature = 3 500
sigma = 1.0e+00 bar
ttime = 20.000 fs
pfactor = 2000000.000 GPa*fs^2
log_filename = ./output/ch6/fcc-Cu_3x3x3_NPT_EMT_0500K.log
traj_filename = ./output/ch6/fcc-Cu_3x3x3_NPT_EMT_0500K.traj
imd Etot(eV) T(K) stress(mean,xx,yy,zz,yz,xz,xy)(GPa) elapsed_time(sec)
1000 12.937 509.57 -1.61 -1.42 -1.57 -1.85 -0.50 0.18 0.00 2.853
2000 12.492 450.87 -0.12 -0.56 -0.23 0.42 0.07 0.10 -0.45 5.125
3000 13.562 474.38 1.96 1.67 1.87 2.34 0.22 0.42 -0.35 7.974
4000 15.870 481.72 2.16 1.91 2.00 2.58 0.28 0.06 -0.50 10.835
5000 15.115 497.90 3.16 3.41 3.06 3.00 0.61 0.43 0.21 13.974
6000 14.462 499.74 2.67 3.02 2.73 2.27 0.59 0.32 0.31 16.821
7000 13.970 496.22 0.74 1.07 0.68 0.49 0.19 -0.10 0.26 19.647
8000 14.336 480.33 -1.85 -2.14 -2.31 -1.11 -0.34 -0.81 -0.48 22.709
9000 13.104 484.38 -2.65 -3.46 -2.59 -1.91 -0.07 -1.67 -0.26 25.913
10000 15.766 567.79 -3.54 -3.66 -3.10 -3.85 0.68 -1.39 -1.18 29.078
11000 13.868 512.80 -1.40 -0.86 -1.01 -2.34 0.42 -1.00 -0.03 32.009
12000 14.059 500.51 0.57 0.88 1.02 -0.18 0.46 -0.81 -0.48 34.781
13000 16.236 537.63 1.53 1.18 1.14 2.26 0.27 -0.79 0.48 37.879
14000 15.715 531.19 2.89 2.46 2.30 3.90 0.50 -0.35 0.46 41.016
15000 15.919 492.59 2.12 2.05 2.26 2.07 -0.17 -0.78 0.20 43.721
16000 14.143 532.73 1.64 2.26 1.72 0.95 0.24 -0.50 0.39 47.002
17000 14.338 487.14 -1.13 -1.23 -1.40 -0.77 0.36 -1.19 0.52 49.995
18000 13.942 491.84 -2.39 -2.94 -2.41 -1.81 -0.43 -1.45 0.71 53.389
19000 12.268 448.83 -2.47 -2.78 -2.07 -2.56 -0.15 -1.24 0.99 56.305
20000 13.945 535.41 -1.69 -1.27 -1.58 -2.23 -0.11 -0.69 0.36 59.510
i,temperature = 4 600
sigma = 1.0e+00 bar
ttime = 20.000 fs
pfactor = 2000000.000 GPa*fs^2
log_filename = ./output/ch6/fcc-Cu_3x3x3_NPT_EMT_0600K.log
traj_filename = ./output/ch6/fcc-Cu_3x3x3_NPT_EMT_0600K.traj
imd Etot(eV) T(K) stress(mean,xx,yy,zz,yz,xz,xy)(GPa) elapsed_time(sec)
1000 16.087 641.72 -3.71 -3.55 -4.01 -3.56 -0.94 -0.10 -0.10 3.070
2000 16.481 603.98 -2.17 -1.77 -2.60 -2.14 -1.18 0.60 -1.15 5.762
3000 17.627 604.66 -0.56 -0.95 -0.97 0.23 -0.82 0.45 -0.64 30.637
4000 16.322 512.69 2.23 2.02 2.14 2.54 -0.14 0.55 -1.16 69.998
5000 17.990 530.96 2.99 2.52 3.70 2.76 -0.04 0.58 -0.93 100.589
6000 18.332 593.33 4.17 4.60 4.02 3.90 0.34 0.44 -0.64 103.463
7000 20.593 703.42 3.37 3.25 3.51 3.36 0.46 0.38 -0.51 106.795
8000 17.471 588.41 2.53 2.50 2.40 2.68 0.92 1.32 -1.43 110.182
9000 16.230 550.43 0.87 0.38 0.95 1.28 1.41 1.33 -0.76 113.385
10000 17.951 648.30 -1.83 -2.22 -1.43 -1.84 2.11 1.18 0.14 116.471
11000 16.131 574.53 -2.30 -2.31 -2.72 -1.88 1.25 1.15 0.04 119.182
12000 16.993 577.14 -3.42 -3.49 -3.64 -3.13 0.94 0.39 -0.22 121.976
13000 15.844 565.26 -2.62 -2.79 -2.66 -2.40 -0.06 -0.97 0.75 124.385
14000 16.340 600.13 -1.73 -2.17 -1.36 -1.65 -0.14 -1.12 -0.20 127.670
15000 17.722 646.40 -0.89 -0.93 -0.71 -1.03 -0.90 -0.41 -0.19 130.387
16000 17.251 559.00 0.32 0.59 -0.29 0.67 -0.35 -0.74 0.14 133.107
17000 17.865 586.11 0.83 1.11 0.70 0.69 0.71 -0.96 0.04 135.098
18000 18.496 591.65 1.10 0.43 1.65 1.23 0.26 -0.85 0.24 137.047
19000 17.045 557.54 1.45 1.30 1.72 1.34 0.03 -0.24 0.35 138.984
20000 17.930 649.16 1.01 1.35 1.06 0.62 -0.04 -0.85 -0.54 140.904
i,temperature = 5 700
sigma = 1.0e+00 bar
ttime = 20.000 fs
pfactor = 2000000.000 GPa*fs^2
log_filename = ./output/ch6/fcc-Cu_3x3x3_NPT_EMT_0700K.log
traj_filename = ./output/ch6/fcc-Cu_3x3x3_NPT_EMT_0700K.traj
imd Etot(eV) T(K) stress(mean,xx,yy,zz,yz,xz,xy)(GPa) elapsed_time(sec)
1000 21.130 717.63 -8.10 -7.76 -9.00 -7.53 -0.50 0.03 -0.46 1.926
2000 18.584 654.84 -5.86 -4.20 -7.07 -6.31 -0.36 -1.02 -0.08 3.894
3000 18.151 672.98 -5.27 -5.15 -5.65 -4.99 -1.52 0.27 -0.06 5.894
4000 18.098 681.02 -4.13 -5.21 -3.67 -3.51 -1.42 0.19 0.12 7.915
5000 19.217 726.64 -3.66 -3.42 -3.52 -4.02 -2.07 1.15 -0.36 9.953
6000 20.184 782.32 -2.69 -1.73 -3.07 -3.26 -1.38 0.01 -0.22 11.895
7000 20.636 711.38 -2.05 -1.98 -2.44 -1.74 -1.91 -0.04 0.19 13.915
8000 21.412 794.20 -0.88 -1.46 -0.99 -0.20 -1.21 1.14 0.07 15.915
9000 21.412 692.04 0.45 -0.09 0.83 0.60 -1.29 1.36 1.36 17.828
10000 20.974 715.60 2.27 1.49 3.24 2.07 -1.39 0.71 1.52 19.732
11000 20.436 680.67 3.30 3.45 3.41 3.05 -0.80 1.51 0.68 21.754
12000 21.224 615.08 2.82 2.44 2.54 3.49 -0.69 1.41 0.76 23.649
13000 21.853 649.51 2.97 2.96 2.82 3.12 -0.77 1.32 0.18 25.699
14000 22.078 691.09 3.29 2.91 3.57 3.40 -0.67 1.50 0.19 27.687
15000 22.062 609.07 2.38 2.46 2.19 2.49 -1.17 0.73 -0.21 29.632
16000 22.444 694.37 2.59 2.18 2.40 3.21 -1.01 1.74 -1.03 31.583
17000 20.422 607.63 3.06 3.09 2.91 3.17 -0.59 1.32 -0.61 33.578
18000 21.280 693.12 2.60 2.65 3.27 1.87 -0.72 1.05 -0.64 35.613
19000 21.836 685.83 1.20 1.59 1.50 0.51 -0.16 -0.00 -0.87 37.611
20000 20.453 706.17 1.69 1.60 0.97 2.50 -0.54 -0.04 -0.31 39.638
i,temperature = 6 800
sigma = 1.0e+00 bar
ttime = 20.000 fs
pfactor = 2000000.000 GPa*fs^2
log_filename = ./output/ch6/fcc-Cu_3x3x3_NPT_EMT_0800K.log
traj_filename = ./output/ch6/fcc-Cu_3x3x3_NPT_EMT_0800K.traj
imd Etot(eV) T(K) stress(mean,xx,yy,zz,yz,xz,xy)(GPa) elapsed_time(sec)
1000 21.992 746.13 -8.04 -6.10 -8.79 -9.24 -0.01 -0.46 -1.04 2.031
2000 19.312 683.29 -5.32 -5.73 -5.06 -5.17 0.87 -1.82 -1.32 3.942
3000 20.427 723.90 -4.14 -5.04 -3.40 -3.98 1.59 -1.85 -2.34 6.007
4000 24.735 918.51 -4.42 -5.42 -3.57 -4.27 1.64 -1.24 -2.25 8.020
5000 23.588 809.15 -4.55 -3.35 -5.15 -5.14 1.16 -0.60 -1.53 9.936
6000 21.399 741.90 -3.83 -3.59 -4.46 -3.43 0.61 0.01 -0.95 11.921
7000 21.007 730.71 -3.13 -3.64 -2.55 -3.21 0.82 1.35 -0.48 13.907
8000 21.089 696.61 -2.25 -3.55 -0.74 -2.47 1.49 1.80 0.13 15.887
9000 23.073 852.01 -2.45 -2.75 -2.36 -2.24 0.51 1.46 0.72 17.806
10000 21.750 731.26 -2.54 -1.78 -3.12 -2.71 1.41 0.52 1.06 19.723
11000 23.415 868.18 -1.70 -0.61 -2.82 -1.67 2.38 0.37 0.76 21.641
12000 22.295 728.36 -2.01 -2.36 -1.08 -2.59 1.93 -0.67 0.35 23.638
13000 23.454 801.19 -2.08 -2.84 -1.60 -1.82 2.03 0.38 0.04 25.699
14000 20.723 690.10 -0.98 -0.33 -1.35 -1.27 0.27 -0.96 -1.26 27.780
15000 22.425 732.43 -1.06 -0.71 -1.44 -1.04 -0.77 0.08 -0.88 29.822
16000 24.276 787.47 -0.19 -1.47 1.10 -0.19 -0.63 -0.06 0.24 31.709
17000 24.079 761.50 -0.04 0.46 -0.80 0.23 -1.64 0.28 -0.68 33.677
18000 23.593 717.72 0.63 2.66 -0.44 -0.33 -0.85 0.44 -0.09 35.814
19000 23.733 717.47 1.07 0.35 2.40 0.46 -0.11 -0.16 -0.30 37.802
20000 23.627 782.00 2.00 1.25 3.11 1.66 0.56 0.73 -0.04 39.794
i,temperature = 7 900
sigma = 1.0e+00 bar
ttime = 20.000 fs
pfactor = 2000000.000 GPa*fs^2
log_filename = ./output/ch6/fcc-Cu_3x3x3_NPT_EMT_0900K.log
traj_filename = ./output/ch6/fcc-Cu_3x3x3_NPT_EMT_0900K.traj
imd Etot(eV) T(K) stress(mean,xx,yy,zz,yz,xz,xy)(GPa) elapsed_time(sec)
1000 24.053 856.20 -6.40 -6.13 -5.54 -7.54 -1.60 -1.35 0.64 1.963
2000 29.027 833.89 0.01 -0.23 -0.49 0.77 -1.99 -0.56 0.11 3.886
3000 29.311 832.15 1.97 2.12 0.89 2.90 -2.61 -0.93 0.76 5.972
4000 30.075 981.67 2.49 2.61 2.97 1.90 -2.07 -1.12 0.30 8.011
5000 29.670 989.71 1.63 0.89 2.92 1.08 -1.05 -0.49 -0.11 9.968
6000 27.201 904.73 2.18 2.36 1.78 2.39 -0.28 -0.20 0.11 11.899
7000 27.076 917.39 3.43 4.50 2.78 3.00 0.80 0.24 0.18 13.895
8000 29.889 995.00 2.59 2.89 2.43 2.46 0.71 0.28 0.24 15.882
9000 30.146 974.61 1.56 1.04 1.64 2.01 -0.48 0.92 -0.78 17.822
10000 25.306 806.60 1.53 1.33 0.97 2.28 0.27 0.35 -1.43 19.831
11000 26.427 813.28 0.39 1.61 -0.28 -0.16 0.69 -0.37 -1.40 21.923
12000 25.481 950.54 0.28 -0.68 1.36 0.16 0.13 -0.80 -2.72 23.897
13000 25.082 875.69 -1.90 -2.96 -0.29 -2.45 -0.31 -0.15 -1.23 25.888
14000 25.217 926.64 -2.53 -1.26 -3.28 -3.04 -1.71 -0.83 -0.87 27.920
15000 22.603 817.02 -0.83 -1.01 -0.65 -0.82 -2.14 -1.40 -0.49 30.011
16000 28.101 918.84 -1.67 -2.51 -0.99 -1.51 -1.79 -2.30 -0.37 32.024
17000 27.314 1031.26 -0.01 -0.25 0.51 -0.29 -1.49 -3.04 0.07 34.046
18000 24.763 713.64 -0.86 -0.12 -2.05 -0.41 -1.61 0.18 0.10 36.032
19000 27.750 904.59 -1.58 -1.35 -1.78 -1.61 -0.33 1.07 -0.01 37.931
20000 27.337 893.66 -0.31 -1.50 0.23 0.36 1.00 -0.40 1.17 39.895
i,temperature = 8 1000
sigma = 1.0e+00 bar
ttime = 20.000 fs
pfactor = 2000000.000 GPa*fs^2
log_filename = ./output/ch6/fcc-Cu_3x3x3_NPT_EMT_1000K.log
traj_filename = ./output/ch6/fcc-Cu_3x3x3_NPT_EMT_1000K.traj
imd Etot(eV) T(K) stress(mean,xx,yy,zz,yz,xz,xy)(GPa) elapsed_time(sec)
1000 28.119 1011.01 -2.14 -1.45 -2.38 -2.59 -1.14 0.95 -0.38 2.036
2000 33.702 1004.21 2.73 2.65 1.75 3.79 -0.86 0.01 -1.29 3.995
3000 35.155 958.17 2.76 2.73 2.89 2.65 -0.50 0.46 -0.13 6.055
4000 32.087 968.53 3.13 3.16 3.04 3.17 0.08 0.16 -0.13 8.055
5000 29.413 931.13 1.13 0.94 0.64 1.80 0.52 -1.28 1.53 9.984
6000 26.729 1009.75 0.28 0.99 -0.17 0.01 -0.41 -1.27 0.95 12.082
7000 30.541 1027.19 -2.95 -2.34 -3.19 -3.31 1.24 -0.82 0.47 14.091
8000 28.584 955.48 -1.39 -2.16 -1.24 -0.78 1.24 -1.43 0.37 16.028
9000 30.511 1133.23 -1.47 -1.90 -1.53 -0.98 0.84 -0.83 -0.61 17.962
10000 30.152 1092.36 0.25 0.39 0.35 0.03 -0.05 -1.58 0.10 19.996
11000 28.550 969.00 1.32 1.63 1.39 0.94 0.48 -0.76 0.47 22.044
12000 31.246 872.10 0.64 0.87 1.79 -0.75 -0.00 -0.60 0.44 24.042
13000 31.001 1081.19 0.86 0.98 0.13 1.48 0.57 1.33 0.70 26.003
14000 28.189 1040.45 -0.33 0.35 -1.06 -0.28 0.50 0.56 0.83 28.044
15000 25.827 831.57 -0.21 0.01 0.98 -1.63 1.15 -1.57 0.27 29.965
16000 31.611 1140.17 -0.48 -0.54 -1.45 0.54 0.90 -1.73 0.20 32.034
17000 30.605 1003.21 0.89 0.19 1.46 1.02 -0.53 -0.41 0.07 34.082
18000 30.230 1017.39 1.31 2.48 1.71 -0.28 -0.74 -0.64 -0.74 36.084
19000 32.260 1140.83 -0.35 0.10 -1.10 -0.07 -1.00 -0.62 -0.84 38.118
20000 25.343 859.61 -0.01 0.37 -0.64 0.25 -1.96 -0.99 0.62 40.049
A visualization of the results is shown below.
Here, the read
method has been set to index="::100"
to visualize the results of interval thinning from the Trajectory
file. Although Cu retains its solid structure and is not moving significantly, we can see that there is a change in the cell size due to the vibrational movement.
[2]:
from ase.io import Trajectory, read
from pfcc_extras.visualize.povray import traj_to_apng
from IPython.display import Image
traj = read("./output/ch6/fcc-Cu_3x3x3_NPT_EMT_0900K.traj", index="::100")
traj_to_apng(traj, f"output/ch6/Fig6-3_fcc-Cu_3x3x3_NPT_EMT_0900K.png", rotation="10x,-10y,0z", clean=True, n_jobs=16)
Image(url="output/ch6/Fig6-3_fcc-Cu_3x3x3_NPT_EMT_0900K.png")
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done 10 out of 20 | elapsed: 10.7s remaining: 10.7s
[Parallel(n_jobs=16)]: Done 20 out of 20 | elapsed: 13.7s finished
[2]:
[3]:
from ase.io import Trajectory, read
from pfcc_extras.visualize.view import view_ngl
traj = read("./output/ch6/fcc-Cu_3x3x3_NPT_EMT_0900K.traj", index="::100")
view_ngl(traj, replace_structure=True)
The time constant \(\tau_t\) of the heat bath is 20 fs and the barostat parameter, pfactor
, is 2e6 GPa\(\cdot\)fs\(^2\). Let’s check how the cell volume changes with time during a 20 ps NPT-MD simulation at 300 K to achieve thermal equilibrium under the above calculation conditions. You can analyze the traj file, which is the result of MD simulation at a specific temperature, with the following code.
[4]:
import matplotlib.pyplot as plt
from pathlib import Path
from ase.io import read,Trajectory
time_step = 0.01 # Time step size in ps between each snapshots recorded in traj
traj = Trajectory("./output/ch6/fcc-Cu_3x3x3_NPT_EMT_0300K.traj")
time = [ i*time_step for i in range(len(traj)) ]
volume = [ atoms.get_volume() for atoms in traj ]
# Create graph
fig = plt.figure(figsize=(8,3))
ax = fig.add_subplot(1, 1, 1)
ax.set_xlabel('time (ps)') # x axis label
ax.set_ylabel('Cell volume (Å^3)') # y axis label
ax.plot(time,volume, alpha=0.5)
ax.set_ylim([1100,1400])
#plt.savefig("filename.png") # Set filename to be saved
plt.show()
The time evolution of the cell volume for a 20 ps NPT-MD simulation at 300 K to achieve thermal equilibrium under these calculation conditions is shown below.
It is shown that the cell volume oscillates within a range of about 4% with the NPT ensemble. Since we are dealing with cubic crystals, we can calculate the lattice constant of the crystal from the geometric mean of this volume, and by plotting the average normalized lattice constant at each temperature from 200 K to 1000 K, we obtain the following results. (Since we want to calculate the lattice constant after equilibrium is reached, we use only the second half of the Trajectory in the
np.mean(vol[int(len(vol)/2):])**(1/3)
part to calculate the lattice constant from the volume.)
[5]:
import matplotlib.pyplot as plt
import numpy as np
from pathlib import Path
from ase.io import read,Trajectory
time_step = 10.0 # Time step size between each snapshots recorded in traj
paths = Path("./output/ch6/").glob(f"**/fcc-Cu_3x3x3_NPT_{calc_type}_*K.traj")
path_list = sorted([ p for p in paths ])
# Temperature list extracted from the filename
temperature = [ float(p.stem.split("_")[-1].replace("K","")) for p in path_list ]
print("temperature = ",temperature)
# Compute lattice parameter
lat_a = []
for path in path_list:
print(f"path = {path}")
traj = Trajectory(path)
vol = [ atoms.get_volume() for atoms in traj ]
lat_a.append(np.mean(vol[int(len(vol)/2):])**(1/3))
print("lat_a = ",lat_a)
# Normalize relative to the value at 300 K
norm_lat_a = lat_a/lat_a[1]
print("norm_lat_a = ",norm_lat_a)
# Plot
fig = plt.figure(figsize=(4,4))
ax = fig.add_subplot(1, 1, 1)
ax.set_xlabel('Temperature (K)') # x axis label
ax.set_ylabel('Normalized lattice parameter') # y axis label
ax.scatter(temperature[:len(norm_lat_a)],norm_lat_a, alpha=0.5,label=calc_type.lower())
ax.legend(loc="upper left")
temperature = [200.0, 300.0, 400.0, 500.0, 600.0, 700.0, 800.0, 900.0, 1000.0]
path = output/ch6/fcc-Cu_3x3x3_NPT_EMT_0200K.traj
path = output/ch6/fcc-Cu_3x3x3_NPT_EMT_0300K.traj
path = output/ch6/fcc-Cu_3x3x3_NPT_EMT_0400K.traj
path = output/ch6/fcc-Cu_3x3x3_NPT_EMT_0500K.traj
path = output/ch6/fcc-Cu_3x3x3_NPT_EMT_0600K.traj
path = output/ch6/fcc-Cu_3x3x3_NPT_EMT_0700K.traj
path = output/ch6/fcc-Cu_3x3x3_NPT_EMT_0800K.traj
path = output/ch6/fcc-Cu_3x3x3_NPT_EMT_0900K.traj
path = output/ch6/fcc-Cu_3x3x3_NPT_EMT_1000K.traj
lat_a = [10.82147984000271, 10.842812387233078, 10.86569914139755, 10.88904498199313, 10.911654633645538, 10.939929859456134, 10.962750012570796, 10.99208239153427, 11.017357433409266]
norm_lat_a = [0.99803256 1. 1.00211078 1.00426389 1.00634911 1.00895685
1.01106149 1.01376672 1.01609777]
[5]:
<matplotlib.legend.Legend at 0x7ff29dee4dc0>
The following plot is obtained by running the above code.
The results are further compared with the PFP calculations and, with the experimental data for reference. There is very good agreement for both the EMT and PFP data, while the PFP data appears to be closer to the experimental data with a small margin.
The coefficient of linear thermal expansion (CTE, \(\alpha\)) is calculated from the temperature dependence of the normalized lattice parameter using the following equation
where \(\alpha\) is the coefficient of linear thermal expansion and \(a(T)\) and \(a_{RT}\) are the lattice constants at temperature \(T\) and room temperature. The following is a summary of ASAP3-EMT, PFP, and experimental values [4].
\(\alpha\) ( \(10^{-5}\) /K) |
|
---|---|
emt |
2.23 |
pfp |
2.13 |
exp |
1.74 |
Considering the calculation error, both calculation results are in reasonable agreement with the experimental values.
The coefficient of thermal expansion can be calculated by using MD simulations of the NPT ensemble in this way.
You may be thinking, “Can’t we reproduce thermal expansion of liquids and gases in the same way?” In principle, this is true, but at present there are only a limited number of models that can reproduce the thermal expansion of liquids and gases. There may be models that are specialized for specific liquids and gases in the classical force field, but when using first-principles calculations, the accuracy of intermolecular interactions in liquids and gases, which are much smaller than those in solids, is critical, and quantum chemical calculations with such accuracy are currently very difficult to perform. In particular, a large amount of computational data is required to create NNPs, and it is currently not very realistic to perform a large number of high-precision quantum chemical calculations. Therefore, the development of models with high accuracy in this area is expected in the future.
[Advanced] Parrinello-Rahman barostat parameter dependency¶
When performing MD simulations in the NPT ensemble, a parameter called pfactor
needs to be chosen. It was explained that the appropriate value range is around 10\(^6\) GPa\(\cdot\)fs\(^2\) to 10\(^7\) GPa\(\cdot\)fs\(^2\). For your reference, the results when changing the value of pfactor
are shown below. The calculation targets are the same fcc-Cu 3x3x3 unit cells as above, and the temperature is 300 K.
When pfactor
is small, the cell volume is oscillating at high speeds which is not desirable, and some regions have a mixture of high and low frequency oscillations making the system unstable. As pfactor
increases, the period of oscillation gradually increases, and the large volume changes at the beginning of the calculation are hardly noticeable. Although there is no clear cut indicator of which value of pfactor
is correct, the median value seems to be as stable as ever, although
small oscillations can be observed for values of 10\(^6\) Ga\(\cdot\)fsec\(^2\) or higher. Similarly, there is no well-defined reference for the upper limit, and since the larger the pfactor
, the longer the oscillation period becomes and the more difficult it is to handle. A range between 10\(^6\) and 10\(^7\) seems appropriate for the above example.
[Advanced] Berendsen barostat parameter dependency¶
Here, we explain the calculation method using Berendsen barostat. The time evolution of pressure is calculated according to the following equation. (For details of the derivation, see reference [5]).
It is clear from the above equation that the Berendsen pressure control method exponentially increases the pressure at each time in the system closer to the external pressure \(\mathbf{P}_o\). Its speed is controlled by the time constant \(\tau_P\).
At each MD step, the coordinates and cell vectors of each atom are scaled by a factor expressed by the following equation
Just as \(\tau_T\) was a time constant when controlling a heat bath, an appropriate time constant \({\tau_P}\) must be set for the pressure control method. Let’s look at an actual calculation example.
Using the NPTBerendsen class, the object defining the dynamics is written in the following form
[6]:
from ase.md.nptberendsen import NPTBerendsen
dyn = NPTBerendsen(
atoms,
time_step*units.fs,
temperature_K = temperature,
pressure_au = 1.0 * units.bar,
taut = 5.0 * units.fs,
taup = 500.0 * units.fs,
compressibility_au = 5e-7 / units.bar,
logfile = log_filename,
trajectory = traj_filename,
loginterval=num_interval
)
Inhomogeneous_NPTBerendsen
, which handles anisotropic pressure control, can be used with the same setting. (Simply relacing the class name from NPTBerendsen
to Inhomogeneous_NPTBerendsen
should work.) One difference between the two classes is that Inhomogeneous_NPTBerendsen
accept mask argument can be set, i.e. setting mask=(1, 1, 1)
allows the cell paramters a, b, and c can vary independently. If the element of this tuple is set to 0, the cell is fixed in that direction.
In addition to the calculation conditions such as temperature and pressure, it is necessary to set parameters called barostat time constant (taup
, \(\tau_P\)) and compression ratio (compressibility
, \(\beta_T\)). The dependence of the time variation of the cell volume on each of these values will be checked using the example of fcc-Cu at 300 K. We will start with \(\tau_P\).
The smaller the time constant, the more unstable and violent the period of oscillation is. On the other hand, if the time constant is too large, the change is too gradual and it takes time to reach equilibrium. This is the same concept as the time constant of the heat bath method. For a system mechanically similar to fcc-Cu, the appropriate value for \(\tau_P\) is around 10\(^2\) fs to 10\(^3\) fs due to the stability and convergence of the volume change.
Next is the dependence on \(\beta_T\). The results are as follows.
The smaller \(\beta_T\) is, the slower the convergence is, and the higher the value, the more unstable it becomes. From the trend of the graph, 10\(^{-7}\) to 10\(^{-6}\)fs seems to be a good range for \(\beta_T\).
There is no strict guideline for choosing the values of \(\tau_P\) and \(\beta_T\). But it is better to have the sense of the trend when these values are changed by an order of magnitude.
Finally, it should be noted that these values are only applicable to dense metallic materials such as fcc-Cu. If one wants to treat a completely different kind of materials (e.g., polymers, liquids, gases, etc.) with NPT ensemble, the appropriate range of values should be studied in advance. In general, it is recommended that great care be taken when working with new material systems, as omitting this preliminary study may lead to unintended results and extra time.
Reference¶
[1] M.E. Tuckerman, “Statistical mechanics: Theory and molecular simulation”, Oxford University Press (2010) ISBN 978-0-19-852526-4. https://global.oup.com/academic/product/statistical-mechanics-9780198525264?q=Statistical%20mechanics:%20Theory%20and%20molecular%20simulation&cc=gb&lang=en#
[2] Melchionna S. (2000) “Constrained systems and statistical distribution”, Physical Review E 61 (6) 6165 https://journals.aps.org/pre/abstract/10.1103/PhysRevE.61.6165
[3] S. Melchionna, G. Ciccotti, B.L. Holian, “Hoover NPT dynamics for systems varying in shape and size”, Molecular Physics, (1993) 78 (3) 533 https://doi.org/10.1080/00268979300100371
[4] F.C. Nix, D. MacNair, “NIST:The Thermal Expansion of Pure Metals: Copper, Gold, Aluminum, Nickel, and Iron” https://materialsdata.nist.gov/handle/11256/32
[5] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath”, J. Chem. Phys. (1984) 81 3684 https://aip.scitation.org/doi/10.1063/1.448118